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ABSTRACT

The goal of this paper is to evaluate the parallel performance of a newly devel-
oped fluid dynamic flow solver ADPDIS3D. ADPDIS3D is a 3-D variable high or-
der multiblock overlapping grid code in curvilinear geometries. It includes a unified
treatment of gas dynamics/MHD (magnetohydrodynamics), multifluid, combustion
and nonequilibrium flows. The code is based on low dissipation high-order accurate
spatial finite difference methods (Yee et al., 1999; Yee & Sjögreen, 2007, 2008) for
turbulence with shock computations. Flow sensors are used in an adaptive procedure
to analyze the computed flow data and indicate the amount, location and type of built-
in shock-capturing numerical dissipation that can be eliminated or further reduced.
By design, the flow sensors, spatial base schemes and nonlinear dissipation models
are standalone modules. The current version of the code consists of high order central
spatial base schemes of order up to 14, and adaptive nonlinear filters of order up to 9.
The code also includes the sixth-order central compact scheme with an eighth-order
compact filter. Standard shock-capturing schemes and hybrid schemes of order up to
nine are included. To further minimize the use of numerical dissipation, the conser-
vative and non-conservative skew-symmetric splitting of the gas dynamics equations
(Sjogreen & Yee, 2009; Yee et al., 2000) are included in the code. ADPDIS3D was
originally designed for time-accurate simulation of hypersonic turbulent flows, in-
cluding combustion, plasma, thermal and chemical nonequilibrium flows. Different
type and order of spatial base schemes and filter dissipations can be used on different
grid blocks.

ADPDIS3D makes use of overset grids, generated by the grid generator Ogen
(Henshaw, 1998). In a parallel performance study, ADPDIS3Dshows good weak and
strong scaling with up to 15,000 processors on the NASA supercomputer Pleiades.
When the number of processors becomes very large, I/O operations can become a
critical factor in the overall execution time. We present animproved algorithm for
parallel I/O, used by ADPDIS3D, which has good scaling properties.
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PARALLEL FLOW SOLVER AND GRID GENERATOR

ADPDIS3D is a high order time-accurate solver that is capable of solving com-
pressible fluids containing a wide range of flow speeds and a number of different gov-
erning equation sets. The currently implemented models include the Euler/Navier-
Stokes equations of standard compressible gas dynamics, the equations of non-ideal
magnetohydrodynamics, and the equations of multi-speciescombustion with or with-
out thermodynamic non-equilibrium models. The code is especially suitable for sim-
ulation of hypersonic turbulent flows, including combustion, plasma, thermal and
chemical non-equilibrium flows. ADPDIS3D approximates theflow equations by
node centered finite difference discretizations on curvilinear grids. For simulation in
complex geometries, ADPDIS3D uses composite overset (multiblock overlapping)
grids generated by the Ogen [3] grid generator. Different type and order of spatial
schemes can be used on different grid blocks.

ADPDIS3D is based on efficient low dissipative high-order accurate spatial meth-
ods that include limiting and filtering with flow sensors [11,6, 12]. The idea of the
method is to advance in time with a highly accurate base scheme, and to apply a non-
linear filter after each full time step to suppress Gibbs’ oscillations at discontinuities
and other unphysical phenomena caused by locally non-smooth solution features.
The filters consist of the dissipative portion of a high ordershock-capturing method
multiplied by a flow sensor, where the flow sensor switches on the dissipation only
where needed. Any dissipative portion of a shock-capturingscheme can be used as
the nonlinear filter dissipation. By design, the flow sensors, spatial base schemes and
nonlinear dissipation models are standalone modules. Therefore, a whole class of low
dissipative high order filter schemes can be derived with ease. Unlike standard shock-
capturing and/or hybrid shock-capturing methods, the nonlinear filter method requires
one Riemann solver per dimension, independent of time discretizations. Thus the
nonlinear filter method is more efficient and accurate than its shock-capturing coun-
terparts employing the same order of the respective schemes. The preferred flow
sensors in ADPDIS3D are based on a wavelet decomposition of the flow field.

The current version of ADPDIS3D contains central spatial base schemes of or-
ders up to 14, and adaptive nonlinear filters obtained from the dissipative portion of
WENO schemes of orders up to nine. The code also includes a sixth-order central
compact scheme with an eighth-order compact filter. For cross comparison purpose,
standard shock-capturing schemes and hybrid schemes of order one to nine are in-
cluded. To further minimize the use of numerical dissipation and tuning of filter pa-
rameters, the conservative and non-conservative skew-symmetric splitting of the gas
dynamics equations [10, 8, 2, 13], and a flow speed indicator [13] are included in the
code. Numerical experiments on several dozens of multi-dimensional test cases with
a wide range of flow types indicate highly time-accurate and efficient simulations can
be obtained.

ADPDIS3D advances the solution in time by Runge-Kutta time stepping, where
temporal order of accuracy can be one through fourth-order.two, three. For reacting
flows, point implicit and implicit Runge-Kutta methods are included.

One of the complications for parallel computation with highorder spatial schemes
is that the computational stencils are very wide, which leads to a large number of
additional ghost points at the boundaries between processor blocks. Furthermore,
ADPDIS3D uses summation-by-parts boundary modification ofthe operators near the
physical boundaries [5, 9]. When the number of processors increases, these boundary



operators can make up a significant part of the computationaldomain in some of the
processors. The load balancing algorithm used by ADPDIS3D takes these effects into
account.

For parallel execution on overset grids, each component grid is evenly distributed
over the total number of processors available. This gives perfect load balancing, but
the amount of communication is larger than optimal. For the explicit time stepping
used in ADPDIS3D, the communication cost is still only a small fraction of the total
computation time. The approach is most efficient when the composite grid is made up
of a few large component grids, because of low computation tocommunication ratio
when component grids with very few grid points are distributed on a large number of
processors. See the following section for examples of performance.

The overlapping grid generator Ogen (part of the Overture framework developed
at Lawrence Livermore National Laboratories) is used to construct overlapping grids
for ADPDIS3D. Given a set of structured curvilinear component meshes that cover a
computational domain and overlap where they meet each other, the overlapping grid
generation algorithm will determine how the grids should interpolate from one an-
other. This process involves the cutting of holes where portions of grids are removed
where they lie outside the computational domain. There are anumber of important
issues that must be addressed to make the grid generation process general, robust and
automatic. The algorithm used by Ogen has been recently enhanced to run on dis-
tributed memory parallel computers. This speeds up the gridgeneration process and
also permits very large grids to be generated.

The objective of this paper is to evaluate the parallel performance of the newly
developed compressible flow solver, ADPDIS3D, by reportingon recently performed
benchmark computations with the solver on the new NASA supercomputer Pleiades.
The essential feature of ADPDIS3D is that it combines the capabilities of a hyper-
sonic flow solver for complex geometries with the capabilities of a solver for direct
numerical simulation of turbulence.

EXAMPLE COMPUTATIONS

Often, hypersonic turbulent flows around re-entry space vehicles and in space
physics involve mixed steady strong shocks and turbulence with unsteady shocklets.
Figure 1 illustrates a schematic of many of the possible steady and unsteady flow
types. While sixth-order or higher order shock-capturing methods are appropriate for
unsteady turbulence with shocklets, lower order shock-capturing methods are more
effective for strong steady or nearly steady shocks in termsof convergence. In order
to minimize the shortcomings of low order and high order shock-capturing schemes,
ADPDIS3D allows different order of accuracy on different component grids. The
two- and three-dimensional test cases reported in [7] illustrate that the overall error in
high speed flow computations is reduced, even if high order schemes are used on only
some of the component grids. The two shown in Figs. 2–4 demonstrate the unique
capability of ADPDIS3D to both solve for flows in complex geometries, and perform
direct numerical simulations of turbulence.

The first example is a 3-D inviscid flow past an Apollo-like re-entry space vehicle
with an overlapping grid system indicated in Fig.. 2a. Thereare six grids in total. The
Cartesian background grid has a fairly coarse grid spacing. The body is defined by a
spline curve, rotated around thex-axis with two orthographic cap grids that cover the



Figure 1. Flow phenomena encountered around an entry vehicle.

Figure 2. Two-dimensional slice through the grid and Mach number color levels in logarith-
mic scale for an Apollo-like CEV, Mach 16.

polar singularities. A cylindrical grid together with a Cartesian grid that covers its
polar singularity are inserted in the wake region. The grid spacing is approximately
0.05 on the body and wake grids and about five times larger on the Cartesian back-
ground grid. Fig. 2b shows computed Mach number color levelson the same 2-D
slice as the grid. The free stream Mach number is 16 in this computation.

Figures 4 and 3 show turbulent mixing by a Richtmyer-Meshkovinstability [4].
The initial condition is a tube with air to the left and SF6 to the right of an interface.
Figure 3 shows the initial flow configuration. The tube is closed at the right end. A
shock wave is sent in from the left. After passing through theair/SF6 interface the
shock wave is reflected at the end of the tube. The reflected shock passes through the
interface and mixes the interface once more. Figure 4 shows the interface, represented
as the iso-surface ofyair = 1/2, whereyair is the mass fraction of air in the mixture.
The interface is given a small initial perturbation to trigger multi-dimensional effects.
The increased mixing of the reflected shock can be assessed from Fig. 4, where the left
subfigure shows the interface after the first shock interaction, and the right subfigure



���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

����������

����

����

����

����

����

����

����

y

x=−0.2 x=Lx=0

Air SF6

xz

Figure 3. Richtmyer-Meshkov instability, geometry and initial data.

Figure 4. Richtmyer-Meshkov instability in Air/SF6. Material interface before (left) and after
(right) reshock. Iso-surface at 1/2 of air mass fraction.
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Figure 5. Execution time with weak scaling for a single grid computation for 20 time steps.
Fixed time step (red) requires no global communication. Fixed CFL number (blue) computes
the local time step and takes global minimum to compute.

shows the interface after the interaction with the reflectedshock.

PARALLEL PERFORMANCE

Figure 5 shows weak scaling on Pleiades (A supercomputer with 48,000 proces-
sors at NASA Ames Research Center) for the Taylor-Green vortex problem [1] in
three space dimensions on a single block grid. The total execution time for a small
number of time steps is measured when the number of grid points per processor is
fixed at 216,000. The number of processors varies up to 15,625. The number of pro-
cessors for the data points in Fig. 5 is always a cube,p3, for integersp = 2, . . . ,25.
This means that not only is the number of points per processorconstant, but also that
the shape of data in each processor is always the same (a cube). The work load at
the boundaries of the domain is identical in each processor,because the boundary
conditions are periodic. Therefore, the number of arithmetic operations is exactly
the same in each processor. Any deviation from a perfectly constant execution time
must be attributed to differences in network performance. It is not surprising that
the performance is superior when the number of processors issmall, because, in that
case, the processors are closer to each other, in the same node, or in the same rack.
Figure 5 shows both the performance with fixed time step (red)and with fixed CFL
number (blue). When the time step is fixed, no global communication is necessary,
but when the CFL number is fixed, the size of the time step is computed before each
time step. This entails more arithmetic operations and a global communication step
to transmit the maximum stable time step to all processors. However, as shown by
Fig. 5, the cost of the global communication, which theoretically should increase log-
arithmically with the number of processors, is not significant, at least up to 10,000
processors.

Figure 6 shows strong scaling on Pleiades for the Apollo-like CEV geometry in
Fig. 2, with 65 million grid points on six component grids. Figure 6 shows results
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Figure 6. Strong scaling performance for an overset grid system of 60million grid points. a)
(left) Execution time in seconds for 100 steps, logarithmic scale. b) (right) Efficiency (right)
for the same data.

with up to 1024 processors, which corresponds to approximately 58,000 points per
processor. The performance started to seriously degrade for larger number of proces-
sors. Figure 6a shows the execution time for 100 time steps vs. number of processors,
and Fig. 6b displays the corresponding efficiency. The efficiency is normalized to be
one at the first data point, which was obtained with 32 processors. Here the nontriv-
ial geometry, grids with cut out holes, and the global communication step required
for the interpolation between overset grids are difficulties that are not present in the
previous weak scaling example.

PARALLEL I/O

Arrays in ADPDIS3D are distributed on all available processors. An array of
N1×N2×N3 points,ui, j,k, 1≤ i ≤ N1, 1≤ j ≤ N2, 1≤ k ≤ N3, is distributed on the
processors in blocks, where the block assigned to processorp is the sub arrayui, j,k,
bp1 ≤ i ≤ ep1, bp2 ≤ j ≤ ep2, bp3 ≤ k ≤ ep3. The block index intervals,[bp1,ep1],
[bp2,ep2], and[bp3,ep3], cover the global index interval,[1,N1], [1,N2], and[1,N3],
respectively, with some overlap between processors that depends on the width of the
computational stencils used. The sizes of the array block inprocessorp are denoted
n1p = ep1−bp1 +1, n2p = ep2−bp2 +1, andn3p = ep3−bp3 +1.

The array when written to a file, is ordered according to the global index, i.e.,
theqth element in the file isui, j,k whereq = i + N1( j −1)+ N1N2(k−1). The rep-
resentation in the file does not depend on the number of processors used to write the
file.

Previous versions of ADPDIS3D wrote arrays to disk by letting each processor
write its own part of the array. The data held by a processor isin general not con-
secutive data items on the file. Thus thepth processor had to write, in the general
case,n2pn3p data chunks, each of sizen1p. This algorithm is simple and reliable and
works fine with number of processors in the hundreds. Howeverthe algorithm turned
out to be very inefficient on supercomputers with a very largenumber of processors.
The inefficiencies come both from the large number of processors participating in the
writing, and from the large number of write statements each process has to issue.



A recent improvement in ADPDIS3D is an algorithm in which only some of the
processors write and where each write operation writes a larger block of data. This
is accomplished by ordering data more optimally for I/O by passing it around in the
message passing network before each write operation. For ease of presentation, the
description of the algorithm below assumes that all integerdivisions can be done
without remainder. The actual implementation in ADPDIS3D can handle more gen-
eral dimension sizes.

Assume that the parallel computer hasPprocessors, enumeratedp= 1, . . . ,P. The
new algorithm takes as input a list of writing processors,rq, q= 1, . . . ,Q, with Q≤P,
and a maximum sizes, such that an array of sizesN1N2 can fit into the memory of
a single processor. The array is divided intoQ slices, with each slice of sizesN1N2,
along thek direction. The number of slices is thenN3/s. Since these slices will
be written byQ processors, each writing processor will be responsible forN3/(Qs)
slices. The writing, therefore, takes place inB= N3/(Qs) steps. In each step a slice of
sizesN1N2 is written from allQ writing processors. These steps will be enumerated
b = 1, . . . ,B. It it straightforward to see that writerq will write the block

Dq,b = [1,N1]× [1,N2]× [kq,b +1,kq,b +s]

wherekq,b = ((q−1)B+b−1)s in stepb of the write operation. Before each of these
write steps, each processor must send the part of the array slice Dq,b that it owns to
the writing processorrq.

Figure 7 displays an outline of the writing algorithm. In Fig. 7, nb denotes the
number of send operations the processor executing the algorithm, performs in write
stepb, wi,b, i = 1, . . . ,nb denotes the processor numbers that the processor executing
the algorithm, sends to in stepb, andGi,b, i = 1, . . . ,nb denotes the intersection of the
part of the array that the processor executing the algorithm, holds with the slice that is
being written by processorwi,b in stepb. If the processor executing the algorithm is
a writer processor, the additional datamb, yi,b, andHi,b are needed, wheremb denotes
the number of receive operations the processor executing the algorithm, performs
in write stepb, yi,b, i = 1, . . . ,mb denotes the processor numbers that the processor
executing the algorithm receieves from in stepb, andHi,b, i = 1, . . . ,mb denotes the
intersection of the part of the array in processoryi,b with the slice that the processor
executing the algorithm is writing in stepb.

The algorithm displayed in Fig. 8 shows how the datanb, wi,b, Gi,b andmb, yi,b,
Hi,b can be computed. The algorithm in Fig. 8 has one loop that extends over all
processors, but the work performed inside the loop is very small. The algorithm also
needs to store one integer array of sizeP. However, this array is not needed once
the data structure is set up. If the data structure is computed once and stored before
the actual numerical computation, the memory requirement will not grow excessively
with P. Scaling to computers with a large number of processors should therefore be
reasonably efficient. Parallel file systems allow the processors to write data simulta-
neously. To allow several processors to write to the same fileat the same time, files
on parallel file systems are distributed cyclically onto a number of disks. The term
’disk’ will here refer to a logical disk, which in reality canconsist one or more phys-
ical disks, for redundancy and improved performance. This means that if the number
of disks (’stripes’) iso and the stripe size iss bytes, then the firsts bytes of the file is
stored on the first disk. The nexts bytes are stored on the second disk, etc. up to the
oth disk, after which distribution continues with disk number one again. See Fig. 9
for a schematic view.



if I am rq then
set file pointer to position(i, j,k) = (1,1,kq,1 +1)

endif
for b := 1 to B

for i := 1 to nb
Send sub-blockGi,b of my array to processorwi,b

endfor
if I am writerthen

allocate arrayu of sizesN2N3
for i := 1 to mb

Receive the sub-blockHi,b from processoryi,b
insert theHi,b sub-block intou

endfor
write u to disk
deallocateu

endif
endfor

Figure 7. Parallel write algorithm implemented in ADPDIS3D.

Performance investigations are complicated because thereare a large number of
parameters that can vary. Among these are the number of disks, the stripe size, the
number of processors participating in the I/O, the data sizein each write statement,
the problem size, and the total number of processors. In addition, a very significant
factor is the number of other users performing I/O operations at the same time. In
the examples below, an array of size 1000×1000×500, which gives a file of size 4
Gbyte when written, is distributed on 1024 processors. The parallel file system used
for the experiments has a maximum of 60 disks.

¿From Fig. 10 we infer that unless the number of writing processors is very small,
it is always more efficient to use a large number of disks. Foro = 20 ando = 60 the
performance levels out when the number of writers exceedso. After 200 writing
processors, the time is almost constant, with some increaseas the maximum number
1024 is reached.

All of the times reported in Fig. 10 are significantly smallerthan with the older
approach where all processors wrote their own data patch to the file. With the old
algorithm, it could take more than an hour to write a file of a few gigabytes size.
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